A painless operation- what can fruitflies teach us about pain pathways?

Research in the Tracey laboratory aims to understand the general principles that govern the specification and function of neuronal circuits. We study this problem using the fruitfly Drosophila melanogaster whose relatively simplified nervous system must perform many of the same computations that are carried out by our own. Despite its simplified brain, Drosophila perform an array of complex behaviors. Powerful genetic tools of Drosophila enable the dissection of neural circuits with a precision that is not matched in any other model system. Genetically encoded calcium sensors allow us to measure the neuronal activity of identified neurons while neuronal silencers and activators allow us to determine the behavioral consequences of the same activity. We are using the fly model to identify circuits and genes that function in nociception which is the sensory input involved in pain signaling. In addition, we are attempting to identify the molecules that are used in neurosensory mechanotransduction which underlies our sense of touch.

Speaker

Dan Tracey PhD
Associate Professor
Department of Biology, IUB